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We introduce the EMC algorithm for reconstructing a particle’s three-dimensional �3D� diffraction intensity
from very many photon shot-noise limited two-dimensional measurements, when the particle orientation in
each measurement is unknown. The algorithm combines a maximization step �M� of the intensity’s likelihood
function, with expansion �E� and compression �C� steps that map the 3D intensity model to a redundant
tomographic representation and back again. After a few iterations of the EMC update rule, the reconstructed
intensity is given to the difference-map algorithm for reconstruction of the particle contrast. We demonstrate
reconstructions with simulated data and investigate the effects of particle complexity, number of measure-
ments, and the number of photons per measurement. The relatively transparent scaling behavior of our algo-
rithm provides an estimate of the data processing resources required for future single-particle imaging
experiments.
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I. INTRODUCTION

If the goal of single-particle imaging by free-electron
x-ray lasers �1� is realized in the next few years, the disci-
plines of imaging and microscopy will have partly merged
with elementary-particle physics. Even with the enormous
flux of the new light sources, the scattered radiation will be
detected as individual photons and hardly resemble diffrac-
tion “images” �Fig. 1�. The data in these experiments will
instead resemble the particle debris produced in elementary-
particle collisions.

The particle physics analogy is imperfect, however. Data
analysis in elementary-particle experiments is complicated
more as the result of complex interactions than complexity of
the structures. Consider the pions produced when a proton is
probed with a photon. By contrast, the fundamental interac-
tions between x-ray photons and electrons in a molecule are
very simple and the complexity in the analysis of the data is
entirely the result of structure.

There are two different data analysis challenges that x-ray
laser studies of single particles will have to face. Consider
the two simulated detector outputs shown in Fig. 1. Are the
photon counts different because the molecule presented a
different orientation to the x-ray beam; is the difference at-
tributable to the statistics of a shot-noise limited signal; or
does some combination of the two apply? It is reasonable to
conjecture that by collecting sufficiently many data, the ori-
entational and statistical uncertainties can be disentangled to
produce molecular reconstructions with acceptable noise and
resolution. In this paper, we present strong evidence in sup-
port of this conjecture by means of an algorithm that suc-
ceeds with simulated data.

Due to the length of this paper, a survey of its contents
may be useful to the reader. Section II explains the theoret-
ical basis of our algorithm whose success is contingent upon
an information theoretic noise criterion. Sections III–V, re-
spectively, describe the test target particles, experimental dif-
fraction conditions, and algorithmic parameters used in these
single-particle imaging simulations. The limits and encour-
aging results of these simulations, whose code implementa-

tion we elaborate in Sec. VI, are presented in Sec. VII. Fi-
nally, Sec. VIII discusses the scaling of our algorithm’s
computational requirements with reconstructed resolution.
Additional relevant technical details of our paper are re-
corded in Appendixes A and C.

II. THEORY

The statistical noise and missing orientational information
can be addressed by imposing internal consistency of two
kinds. First, consider the shot noise of the detected signal.
Suppose a collection of data sets, such as the pair in Fig. 1,
have been identified as candidates for data taken with the
molecule in nearly the same orientation. While simply aver-
aging the photon counts yields the continuous signal we are
after, we have available the stronger test that the distribution
of counts for the measurement ensemble, at each pixel, has
the correct Poissonian form. If the test fails then a different
subset of the data must be identified which has this property.
Statistical consistency, by itself, is thus a means for classify-
ing like-oriented data sets.

The purely statistical analysis makes no reference to the
structure implicit in the missing orientational information.
This structure begins with the basic fact that the missing
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FIG. 1. �Color online� The same or different? Two simulated
measurements �noisy diffraction patterns� in a single-particle imag-
ing experiment, where color �white, orange, green, and blue� repre-
sents recorded photon counts �0, 1, 2, and 3�. Are the differences in
the measurements purely statistical, or do they reflect a different
view �orientation� of the particle?
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information comprises just three continuous variables �e.g.,
Euler angles� and extends to more detailed constraints, such
as the fact that the data samples a signal on a spherical
�Ewald� surface in three dimensions �3Ds� and different
spherical samples have common values along their intersec-
tion, etc. A successful data analysis scheme for the single-
particle imaging experiments will not just have to signal-
average shot noise but must also reconstruct the missing
orientational information by relying on internal consistency
associated with the rotation group. The two forms of uncer-
tainty, statistical and orientational, are not independent. In
particular, when the statistical noise is large �few detected
photons�, we expect the reconstruction of the orientational
information to be probabilistic in character �i.e., distributions
of angles as opposed to definite values�.

A. Noise criterion

A natural question to ask is whether there exists an infor-
mation theoretic criterion that would apply to any recon-
struction algorithm and that can be used to evaluate the fea-
sibility of reconstructions for particular experimental
parameters. One of us �2� studied this question for a minimal
model with a single rotation angle and obtained an explicit
noise criterion formula. Although such a detailed analysis is
difficult to extend to the three-dimensional geometry of the
single-particle imaging experiments, the mathematical state-
ment of the criterion is completely general and, when evalu-
ated numerically by the reconstruction algorithm, serves as a
useful diagnostic. We include a brief discussion of the crite-
rion here and refer the reader to the original article for de-
tails.

We recall that the mutual information I�X ,Y� associated
with a pair of random variables X and Y is an information
theoretic measure of their degree of correlation: I�X ,Y� is the
average information in bits that a measurement of X reveals
about Y �or conversely�. Keeping with the notation of Refs.
�2,3�, we denote the three-dimensional intensity distribution
by W, the photon counts recorded by the detector on a two-
dimensional �2D� spherical surface by K, and the three un-
known parameters that specify the orientation of the surface
within the intensity space by �. The intensities W have the
interpretation of random variables �just as K and �� since the
particle being reconstructed �and so the associated W� be-
longs to a statistical ensemble with known characteristics
�size, intrinsic resolution, etc.�.

There are three forms of mutual information that arise in
the framework where information about a model W is ob-
tained through measurement of data K that is both statisti-
cally uncertain and incomplete �because � is not measured�.
The first is I�K ,W� and measures the information obtained
about the model intensities W from a typical unoriented mea-
surement K. A second mutual information is I�K ,�� �W, the
correlation between the measurement K and the orientation
� conditional on a typical model W. We may also think of
I�K ,�� �W as the entropy of � reduced by the finite entropy
in its distribution when given typical measurements K and
models W. Finally, a simple identity �see Appendix A� yields
the third form

I�K,W��� = I�K,W� + I�K,���W �1�

as the sum of the other two. The mutual information
I�K ,W� �� is the simplest of the three, as it measures the
direct correlation between the continuous signal W and its
Poisson samples K because it is conditional on a known ori-
entation �. In the limit where the mean photon count per
detector pixel is much less than 1, this mutual information is
given simply in terms of the total number of photons N de-
tected in an average measurement �2�,

I�K,W��� = �1 − ��N , �2�

where ��0.577 is Euler’s constant.
In order to sufficiently sample the particle orientations

and improve the signal to noise, information is accumulated
over the course of many measurements. The information de-
livered in a stream of measurements will initially grow in
proportion to the number of measurements, since typically
each 2D measurement K samples a different part of the 3D
signal W. Two of the mutual information quantities intro-
duced above may therefore be interpreted as information
rates,

I�K,W��� = data rate in a hypothetical experiment

with known particle orientations,

I�K,W� = data rate in the actual experiment

with unknown orientations.

The time unit in these rates is the time for one measurement.
The larger of these rates I�K ,W� �� applies to the situation
where the noisy data K can simply be signal averaged to
obtain W. From the ratio

r =
I�K,W�

I�K,W���
, �3�

we can assess the reduction in the data rate relative to the
signal-averaging scenario. Because this reduction can be se-
vere when shot noise is large, we are primarily interested in
the dependence of r on the mean photon number per mea-
surement N. Not only does an experiment with small r�N�
require a correspondingly larger number of measurements to
obtain the same signal to noise in the reconstructed particle,
our reconstruction algorithm �Sec. II C� requires many more
iterations in this case.

Upon using Eq. �1�, the case r�N�=1 /2 corresponds to the
situation I�K ,W�= I�K ,�� �W, that is, the information in one
unoriented measurement exactly matches the information ac-
quired about its orientation. This interpretation does not im-
ply that reconstruction is impossible for smaller r�N� since
the criterion refers to the properties of a single measurement
while the reconstruction algorithm may, in principle, process
many measurements in aggregate. Nevertheless, the criterion
r�N��1 /2 correctly identifies the cross-over region separat-
ing easy and hard reconstructions. Using Eq. �1�, we can
rewrite the feasibility criterion in the form
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r�N� = 1 −
I�K,���W
I�K,W���

�
1

2
. �4�

Our algorithm based on the expectation maximization �EM�
principle �4� evaluates r�N� with no overhead since the prob-
ability distributions in � of the measurements K, from which
I�K ,�� �W is derived, are computed in the course of updating
the model. When the inequality above is strongly violated,
we should expect a much lower signal to noise in the finished
reconstruction than a naive signal-averaging estimate would
predict.

An important general observation about the noise crite-
rion �4� is that it is remarkably optimistic. As an information
measure, I�K ,�� �W grows only logarithmically with the
complexity of the particle. Recall that I�K ,�� �W is the en-
tropy in � of a typical measurement K. Suppose a particle of
radius R has its density resolved to contrast elements of size
�R. Its rotational structure �in its own space or the Fourier
transform space of W� will then only extend to an angular
resolution �R /R. A sampling of the rotation group compris-
ing �R /�R�3 elements thus provides a fair estimate of the
entropy and I�K ,�� �W evaluates to a number of order
3 log�R /�R� �5�. This estimate and Eqs. �2� and �4� imply
that values of N of only a few hundred should be sufficient to
reconstruct even the most complex particles encountered in
biology.

B. Classification by cross-correlating data

The theoretical noise criterion discussed above is beyond
the reach of the kind of algorithm that would seem to offer
the most direct solution �3�. In this scenario, the task is di-
vided into two steps. The first is concerned with classifying
the diffraction data into sets that, with some level of confi-
dence, describe the particle in a small range of orientations.
After averaging photon counts for the like sets to improve
the signal quality, the diffraction pattern averages would then
be assembled into a consistent three-dimensional intensity
distribution in the second step.

The most direct method of assessing the similarity of two
diffraction data is to compute the cross correlation. A pair of
like views of the particle would be identified by a large cross
correlation. Because this measure also fluctuates as the result
of shot noise, its statistical significance must be estimated as
well. The result of such an analysis �3� is that the cross-
correlation-based classification can succeed only if the aver-
age number of photons per diffraction pattern N and the
number of detector pixels Mpix satisfy

N � �Mpix. �5�

This criterion imposes a higher threshold on N than the in-
formation theoretic criterion �4� because Mpix grows algebra-
ically, and not logarithmically, with the complexity of the
reconstructed particle.

Since the number of measured diffraction patterns will be
very large, and the number of pairs to be cross correlated
grows as its square, the execution of this approach also
seems prohibitive. As Bortel and Faigel �6� showed, how-
ever, this estimate is overly pessimistic since by selecting

suitable representatives of the orientational classes the num-
ber of cross correlation computations can be drastically re-
duced. The EM algorithm described below is an alternative
classification method where the most time consuming step is
again the computation of very many cross correlations. But
unlike methods where both vectors of the cross correlation
are data and criterion �5� applies, in the EM algorithm only
one of the vectors is data, while the other is derived from a
model. This has the added bonus that the time of the EM
calculation is linear, rather than quadratic, in the number of
measurements.

C. Classification by expectation maximization

The algorithm we have developed for the single-particle
imaging experiments and studied previously in the context of
noise limits �2� is based on the idea of EM �4�. In general,
EM seeks to reconstruct a model from statistical data that is
incomplete. The model in the present setting is the intensity
signal W, the data are the sets of photon counts K recorded
by the detector, and the latter is incomplete because the ori-
entation �, of the particle relative to the detector, is not
measured.

The EM algorithm is an update rule on the model
W→W� based on maximizing a log-likelihood function
Q�W��. The algorithm derives its name from the fact that
Q�W�� is actually an expectation value of log-likelihood
functions, where a probability distribution based on the cur-
rent model parameters W is applied to the missing data �.
We will derive Q�W�� for the single-particle imaging prob-
lem in stages, beginning with the log-likelihood function for
the photon counts at a single detector pixel.

Let W�q� be the time-integrated scattered intensity at spa-
tial frequency q when the particle is in some reference ori-
entation. The detector pixels labeled by the index i approxi-
mately measure Mpix point samples W�qi�. When multiplied
by the pixel area and divided by the photon energy, W�qi�
corresponds to the average photon number recorded at pixel
i. Since these normalization factors are constants, we will
refer to W interchangeably as “intensity” or “average photon
number.” If we now give the particle some arbitrary orienta-
tion �, the average photon number at pixel i is W�R� ·qi�,
where R� is the orthogonal matrix corresponding to the ro-
tation between the reference orientation and �. Because the
implementation of the algorithm approximates the continu-
ous � with a discrete sampling of Mrot points labeled by the
index j, we define Wij =W�R j ·qi� as the average photon
number at detector pixel i when the particle has orientation j.

The log-likelihood function for the mean photon number
Wij� , given a photon count Kik at pixel i in measurement k, is
the logarithm of the Poisson distribution �apart from an irrel-
evant constant�,

Qijk�W�� = Kik log Wij� − Wij� . �6�

Summing this function over the detector pixels gives the
log-likelihood function associated with the joint and inde-
pendent Poisson distributions on the photons detected in a
single measurement �labeled by k�,
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Qjk�W�� = �
i=1

Mpix

Qijk�W�� . �7�

If we knew the orientation j that applied to the counts Kik of
measurement k, we would try to maximize the corresponding
Qjk with respect to the model values Wij� . The EM algorithm
deals with the missing information by making an educated
estimate of j, for each measurement k, based on the current
model values. However, before we enter into these details we
should point out that the EM algorithm in our formulation
works with many more model parameters than there are in
the physical model. That is because Wij and Wi�j� are treated
as independent parameters even in the event that the corre-
sponding spatial frequencies R j ·qi and R j� ·qi� are nearly the
same. This overspecification of parameters will be rectified
by the “compression step” described below.

The EM algorithm defines the log-likelihood function
Q�W�� on the updated model parameters W� by assigning a
provisional distribution of orientations j to each measure-
ment k based on the current model parameters W. The j
distribution is given as the normalized likelihood function
for the measurements Kik conditional on j and the model
parameters W. Up to an irrelevant j-independent factor, the
conditional probability in question is the product of Poisson
probabilities at each detector pixel,

Rjk�W� = 	
i=1

Mpix

Wij
Kik exp�− Wij� . �8�

The normalized likelihood function allows for an arbitrary
prior distribution of the orientations j which we denote by
the normalized weights wj,

Pjk�W� =
wjRjk�W�

�
j

wjRjk�W�
. �9�

This form is necessary even when the prior distribution on
orientations � is uniform �the usual assumption for the
single-particle experiments� because, in general, the discrete
samples j cannot be chosen in such a way that the weights wj
are uniform. The EM log-likelihood function may now be
written explicitly as

Q�W�� = �
k=1

Mdata

�
j=1

Mrot

Pjk�W�Qjk�W�� . �10�

Details on the maximization of Q�W�� are given in Ap-
pendix B; the resulting “maximizing” �M� update rule is
simple and intuitive,

M:Wij → Wij� =

�
k=1

Mdata

Pjk�W�Kik

�
k=1

Mdata

Pjk�W�

. �11�

We see that the data Kik are averaged over all the data sets �k
index� with the unknown orientation index j distributed ac-
cording to probabilities Pjk�W� defined by the current model.

It is instructive to check that the update rule applied to an
arbitrary rotation of the true signal leaves the signal un-
changed �details in Appendix B�.

We now return to the point that the parameters Wij over-
specify the true model parameters. For fixed j, the Mpix num-
bers Wij correspond to a tomographic sampling of the 3D
space of intensities on a spherical surface with orientation in
the 3D space specified by j. To recover a signal in the 3D
space, we define a “condensation/compression” �C� map-
ping,

C:Wij → W�p� , �12�

where p denotes a spatial frequency sampling point in the 3D
intensity space. Since the samples p will be arranged on a
regular 3D grid, we define interpolation weights f�q� for a
general point q in the 3D space, which vanish for large �q�
and have the property,

1 = �
p

f�p − q� , �13�

for arbitrary q. Recalling that the value Wij corresponds to
the 3D sampling point R j ·qi, the signal values after the com-
pression mapping are given by

W�p� =

�
i=1

Mpix

�
j=1

Mrot

f�p − R j · qi�Wij

�
i=1

Mpix

�
j=1

Mrot

f�p − R j · qi�

. �14�

To begin another round of the EM algorithm, after the
condensation step, the signal values on the 3D grid have to
be “exported/expanded” �E� to the tomographic representa-
tion,

E:W�p� → Wij� . �15�

Using the same interpolation weights and rotation samples j
as before, we have

Wij� = �
p

f�p − R j · qi�W�p� . �16�

The combined mappings E ·C :Wij→Wij� then have the effect
of imposing on the redundant tomographic representation of
the signal the property that it is derived from values on a 3D
intensity grid. A slightly different way of grouping the three
mappings defines one iteration of what we will call the EMC
algorithm �expansion followed by expectation maximization
followed by compression�,

C · M · E:W�p� → W��p� . �17�

The most time consuming step of the EMC algorithm is
the computation of the probabilities Pjk�W�. Prior to normal-
ization, these are the likelihood functions Rjk�W� whose
logarithms are given by
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log�Rjk�W�� = �
i=1

Mpix

Kik log Wij − Wij . �18�

At the heart of the algorithm, we have to compute the cross
correlation �sum on i� between the photon counts in each
measurement k and the logarithm of the signal at each to-
mographic sampling �particle orientation� j. Since data are
not cross correlated with data, as in some classification meth-
ods, the time scaling is linear in the number of measure-
ments. After normalizing to get Pjk�W�, the mutual informa-
tion needed for the noise criterion �4� is obtained without
significant additional effort �details in Appendix B�,

I�K,���W =
1

Mdata
�
k=1

Mdata

�
j=1

Mrot

Pjk�W�log
Pjk�W�
wj

� . �19�

The expectation maximization technique described above
is very similar to that used by Scheres et al. �7� for cryo-EM
reconstructions. Cryo-EM and single-particle x-ray imaging
differ in two important physical respects. The first is that the
diffraction data in the x-ray experiments have a known origin
�zero frequency�, thereby reducing the missing information.
This is not completely an advantage because the diffraction
data, after a successful reconstruction, must undergo an ad-
ditional stage of phase retrieval before the results can be
compared with cryo-EM. The second difference is the noise
model that applies to the two techniques. In the absence of
background, the shot noise in the x-ray experiments is a fun-
damental and parameter-free process, whereas the back-
ground ice scattering in cryo-EM requires phenomenological
models. The expectation maximization algorithm is general
enough that these differences do not change the overall struc-
ture of the reconstruction process. In fact, the work of
Scheres et al. �7� pointed out that the algorithm is readily
adapted to include additional missing data, such as confor-
mational variants of the molecule.

Redundant representations of the model parameters and
operations that impose consistency with a physical �3D�
model are also shared features. Scheres et al. �7� obtained the
3D model using algebraic reconstruction techniques �ART�
�8�, a least-squares projection technique. The corresponding
operation in our reconstruction algorithm is the linear
compression-expansion mapping E ·C. The redundancy
question did not arise in the same way for the minimal model
studied previously �2�, with only a single rotation axis. There
the intensity tomographs did not intersect and the speckle
structure had to be imposed by an additional support con-
straint on the Fourier transform of the intensity distribution.

Finally, we note that Fung et al. �9� developed a technique
that, like our expectation maximization approach, uses the
entire body of data in a single update of the model param-
eters.

III. TEST PARTICLES

When simulating the single-particle experiments, it is im-
portant to distinguish between the resolution limit imposed
by the maximum measured scattering angle and the reso-
lution intrinsic to the scattering particle as a result of its

dynamics. The scattering cross section for a complex mol-
ecule is generally significantly smaller, at large momentum
transfer, than what is predicted by atomic form factors and a
static molecular structure. This phenomenon is well known
in crystallography, where the coherent illumination of nu-
merous molecules in various states of perturbation is
equivalent—when considering the information recorded in
Bragg peaks—to a single molecule with blurred contrast.
The same effect, but in the temporal domain, will diminish
the scattering at large angles in the single-particle experi-
ments.

The dynamics of molecules subject to intense x-ray pulses
is complicated by the presence of several physical processes
�10�. In the case where the degree of ionization of the atoms
is relatively low during the passage of the pulse, the x-ray
scattering is dominated by the atomic cores and can be ana-
lyzed by modeling the atomic motions. Let Ak�t� be the am-
plitude of the incident radiation in a particular momentum
mode k. The cross section for scattering a photon into mode
k+q with frequency � contains as a factor the expression

��q� = � dtAk�t�ei�t�
p

fp�q�exp�iq · rp�t���2

, �20�

where fp�q� is the atomic form factor of atom p whose po-
sition rp�t� changes with time as a result of large scale ion-
ization, etc. We are interested in modeling the q dependence
of the molecular form factor �20�. Without access to detailed
simulations of the Coulomb explosion, we have adopted for
our data modeling the simple one-parameter form,

��q�/��0� = exp�− B�q�2�S�q� , �21�

where S�q� is the normalized static �t=0� structure factor of
the molecule. This Gaussian form results if the dynamics of
the positions rp�t� can be approximated by independent
Gaussian fluctuations over the coherent time scale T of the
pulse. The period T or the time during which the function
Ak�t�ei�t is approximately constant is significantly shorter
than the pulse duration in a nonseeded free-electron laser
�11�.

We expect more detailed dynamical simulations of the
scattering cross section to show significant departures from
the form above, of a simple Gaussian factor modulating a
static structure factor. Rather, the effective structure factor of
an exploding molecule should resemble that of an atomistic
density that is primarily blurred radially, with contrast at the
surface of the molecule experiencing the greatest degradation
�10�. Given such complications, our test particle modeling
ignores atomicity and treats the particle more simply as a
distribution of positive contrast on a specified support with a
phenomenologically defined intrinsic resolution given by the
form �21�.

A. Binary contrast particles

It is a great convenience, when developing algorithms to
have a simply defined ensemble of problem instances that
offers direct control over the key parameters. We have cho-
sen to work with an ensemble having a single parameter that
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controls the complexity of the particle, where our measure of
complexity is the dimensionless radius R, which specifies the
physical particle radius in units of the intrinsic resolution.
Our particles have the following properties: �1� spherical
shape, �2� binary contrast, and �3� Gaussian form factor.

Property �1� is chosen to make the reconstructions as hard
as possible, both for the assembly of the 3D intensity and
later in the phase retrieval stage �the spherical support offer-
ing the fewest constraints �12��. We chose �2� to mimic a
large biomolecule that because of damage can only be re-
solved into solvent �empty� and nonsolvent regions. This
property also has the convenience that most of the informa-
tion about the structure is conveyed by rendering a single 3D
contour at an intermediate contrast. Property �3� defines the
intrinsic resolution.

The construction of a test particle begins by choosing a
value for the dimensionless radius R; the final contrast values
will be defined on a cubic grid of size 2R+1. Our test par-
ticle construction algorithm is diagramed in pseudocode
�Tables I and II�. It uses the particle support S �voxels inside
the sphere of radius R� and a Gaussian low-pass filter F�q� to
impose the form factor �21� on the Fourier transform of the
contrast. To keep the dynamic range of the intensity mea-
surements in our simulations constant for different particle
sizes R, we parametrize the filter as

F�q� = exp�− 1.5��q�/qmax�2� , �22�

where qmax=� /R. Since only scattering with �q�	qmax is
measured, the discarded power is always

�1

exp�− 3q2�q2dq

�0

exp�− 3q2�q2dq

= 11% . �23�

In Fig. 2 we show examples of binary contrast test par-
ticles constructed for three values of the dimensionless ra-
dius R. The largest particles considered in this study had
R=8 because the reconstruction computations grow, in both
time and memory, very rapidly with R. In Sec. VII we dis-
cuss the scaling of the computations with R.

B. Degraded resolution biomolecules

To put our dimensionless radius R in perspective, the
same low-pass filter used for test particles was applied to the
roughly 0.8 MDa biomolecule GroEL �13�. After binning the
coordinates of the nonhydrogen atoms of the PDB structure
on a cubic grid of resolution 2 Å, the discrete Fourier trans-
form was computed and truncated at the size 2R+1. The
result was then multiplied by the filter �22� and inverse trans-
formed to give the contrast used in the simulation.

Figure 3 shows GroEL processed in this way for three
values of R. Handedness in the protein secondary structure
begins to appear at about R=6. These degraded resolution
models of GroEL, which mimic the effects of dynamics and

TABLE I. Test particle construction.

Output: particle contrast on cubic grid C
C←RandomContrast

for i←1 to 4 do
C←BinaryContrast�C�
C←LowPassFilter�C�

end
return C

TABLE II. Binary contrast projection.

Input: arbitrary contrast on C, support S
Output: BinaryContrast�C�

for each r�S do C�r�←0
v←MedianValue �C�r�S��
for each r�S do

if C�r�	v then

C�r�←0

else

C�r�←1

end
end
return C

FIG. 2. Examples of the random binary contrast particles used in
our simulations. The contrast is nearly uniform inside a labyrinthine
region that fills half the volume of a sphere. Shown are particles of
radius R=4,8 ,12 �left to right�, where the dimensionless R is in
units of the intrinsic resolution, i.e., the scale of the voxels shown in
the cross section for each particle in the lower panel. The particle
renderings in this paper, such as those above, show the isocontrast
surface appropriate for the labyrinth walls �half the maximum
contrast�.

FIG. 3. Contrast of the protein complex GroEL �13� degraded
by the same type of low-pass filter used in the construction of
random test particles �Fig. 2�. The axial length of GroEL is approxi-
mately 15 nm. At high damage, R=4 �left�, the contrast reveals only
the gross particle shape �“cornEL”�. Handedness of the protein sec-
ondary structure appears at about R=6 �middle� and is fully evident
by R=8 �right�.
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a finite duration pulse, are of course completely phenomeno-
logical. It may not even be true that the diffraction signal can
be modeled by an appropriately blurred contrast function.
This will be the case, for example, if the damage dynamics
strongly varies with the orientation of the particle. Finally,
we cannot ignore the fact that, as a result of thermal motion
and solvent, at some level of resolution even the model of a
unique �t=0� diffraction signal breaks down.

IV. EXPERIMENTAL PARAMETERS

A. Detector parameters

The detector geometry, pixel dimensions, and position
relative to the scattering particle determine the spatial fre-
quency samples qi of the experimental data. Our simulations
use a detector model with three parameters: oversampling
factor �, maximum scattering angle �, and a dimensionless
central data cutoff .

The oversampling factor has the most direct interpretation
in real space. Oversampling � corresponds to embedding the
particle, with contrast defined on a grid of size 2R+1, on a
grid magnified in size by the factor �. This also defines the
dimensions of the 3D intensity grid, on which most of the
computations of the EMC algorithm takes place. Since Fou-
rier transforms play no role in these computations, there is no
incentive to make the dimensions of the intensity grid a
product of small primes. It is more natural in the EMC cal-
culations, which have rotational symmetry about zero fre-
quency, to have intensity grids of odd dimension with indices
that run between −qmax and +qmax. Here, qmax is given by �R
rounded up to the nearest integer. Speckles in the intensity
distribution will have a linear size � in grid units.

A real detector does not measures point samples with re-
spect to spatial frequency but convolves the true intensity
signal with a point spread function defined by the pixel re-
sponse �14�. To minimize this effect, the oversampling in
experiments should be kept large. Another reason for keep-
ing � large is algorithmic. The expansion and compression
steps of the EMC algorithm, which interpolate between to-
mographic and grid samples, introduce errors that are also
minimized when the oversampling is large. In this study, we
used �=6.

The maximum scattering angle is determined by the ra-
dius of the detector L and the distance D between the particle
and the detector by tan �=L /D. We define L to be the radius
of the largest disk that fits inside the actual detector. This
corresponds to discarding data recorded in pixels outside the
disk, in the corners of the detector. With this minor trunca-
tion of the data, all of it can be embedded in the 3D intensity
grid for any particle orientation �relative to the reference ori-
entation�.

The actual choice of spatial frequencies qi used by the
EMC algorithm is largely arbitrary, and so we start by con-
sidering detector pixels at arbitrary positions �xi ,yi� in the
detector plane. Up to a constant factor, the photon momen-
tum detected at pixel i is

pi =
�xi,yi,D�

�xi
2 + yi

2 + D2
, �24�

and the corresponding spatial frequency, or momentum trans-
fer from the incident beam, is qi=pi−p0, where p0 is given

by Eq. �24� with xi=yi=0. Intensities at these spatial fre-
quencies will be represented as interpolated values with re-
spect to the 3D intensity grid. Since the latter has unit grid
spacing, we choose an appropriate rescaling of the qi that is
well matched with this. Because most detectors will have
pixel positions on a square lattice with some pixel spacing d,
our simulations are based on this model. We note, however,
that the EMC algorithm operates with general tables of fre-
quencies qi, and whether these are derived from a standard
detector or a more complex tiled design is invisible to the
workings of the algorithm. For the square-array detector
xi=mid, yi=nid, where mi and ni are integers, and the res-
caled spatial frequencies are given by

qi =
�mi,ni,D/d�

��mi
2 + ni

2��d/D�2 + 1
− �0,0,D/d� . �25�

These samples lie on the surface of a sphere that passes
through the origin and the scaling is such that samples near
the origin match the 3D integer grid,

qi � �mi,ni,0� . �26�

The pixels at the edge of the detector have

�mi
2 + ni

2 = L/d �27�

and should correspond to frequencies at the highest reso-
lution shell or �qi�=qmax. This condition evaluated for Eq.
�25� with D=L cot � reduces to

qmax = �L/d�cos � sec��/2� . �28�

For a small maximum scattering angle, this reduces to the
equality between the pixel size of the detector 2�L /d� and the
number of samples in one dimension �1D� of the intensity
grid 2qmax. The � dependence of expression �28� is a result of
the spherical shape of the Ewald sphere.

The forward scattering by the uniform or uninteresting
part of the charge density of a compact particle is so much
more intense than the scattering at larger angles from the
nonuniform interesting part that most detectors need to have
the central pixels blocked �beyond what is needed to avoid
the incident beam�. Figure 4 shows a simulated intensity
scan passing through the origin, for one of the test particles
described in Sec. III. The huge central speckle contains es-

0.0 0.2 0.4 0.6 0.8 1.0
q�qmax

Intensity

I�q�

200�I�q�

FIG. 4. Radial intensity scan for an R=8 test particle on a linear
scale. Our simulations only use data collected outside the central
speckle q /qmax� /R=0.18.
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sentially only information about the total charge and almost
no information about the structure of the particle. A natural
size for the detector block is such that scattering at frequen-
cies inside the main speckle is discarded. We obtain the cut-
off frequency qmin by evaluating the scattering amplitude of a
uniform ball having the same radius R as the test particle.
The first vanishing of this amplitude determines qmin,

�R/qmax�qmin =  , �29�

where �1.43 is the first nonzero root of �x=tan �x. Since
qmax=�R, more generally we define

qmin = � , �30�

which shows that the low-frequency cutoff is  times the
speckle size in grid units ���.

We conclude this section by reviewing the procedure for
generating the spatial frequencies qi used by the EMC algo-
rithm. Prior to this, a dimensionless test particle radius R has
been selected. The half-size of the intensity grid is then given
by qmax=�R, and our simulations used �=6. Given the
maximum scattering angle � we then determine the detector
radius in pixel units L /d, from Eq. �28�, as well as the
detector-particle distance D /d using D=L cot �. All our
simulations used �=45°. Having determined L /d, we deter-
mine �for our choice of square-array detector� the indices mi,
ni satisfying mi

2+ni
2	 �L /d�2. These are used in formula �25�

to give the table of frequency samples in the reference ori-
entation of the particle. Finally, to model the discarded cen-
tral data, we remove from the table all samples with
�qi�	qmin, where qmin=1.43�.

B. Diffracted signal strength

A key experimental parameter is the flux of photons inci-
dent on the particle. For the purpose of simulating the recon-
struction process, however, a more convenient form of this
parameter is the average number of photons scattered to the
detector in one measurement N. This normalization of the
diffraction signal can be carried out once the detector’s spa-
tial frequency samples qi are determined.

In order to generate diffraction data with the property that
the mean photon number is N, we first compute the squared
magnitude of the Fourier transform of the particle contrast
embedded on the intensity grid �having size 2qmax�. We in-
terpret the numbers on this grid as the photon flux scattered
into the respective spatial frequencies, at this point with ar-
bitrary global normalization. A detector pixel at one such
frequency sample will record an integer photon count drawn
from the Poisson distribution having the �time and pixel
area-integrated� flux as mean. The quantity we wish to nor-
malize is the net flux at all the detector pixels. When this
quantity is N then the mean photon number per measurement
will also be N.

Because the particle contrast is not spherically symmetric,
the net-diffracted flux to the detector pixels will fluctuate
with the particle orientation. We avoid bias arising from this
effect by sampling a few hundred orientations of the particle
and applying the associated rotations to the frequency
samples in order to estimate the orientation-averaged flux.

This number is then used to rescale the flux values on our 3D
intensity grid. With this normalization in place, we generate
data by repeatedly sampling random orientations, rotating
the frequency samples, and then drawing Poisson samples at
each of the rotated frequencies for the means given on the
normalized intensity grid. Linear interpolation of the grid
intensities is used to obtain the diffracted fluxes at the rotated
frequencies.

V. RECONSTRUCTION PARAMETERS

In addition to the diffraction data, prior information about
the particle provides additional parameters to the reconstruc-
tion algorithm. The only such information we consider in our
simulations is the dimensionless particle radius R. This pa-
rameter is used in both the intensity reconstruction by the
EMC algorithm, as well as the phase retrieval stage that re-
constructs the particle contrast from the intensity.

A. Rotation group sampling

The EMC algorithm orients 2D data tomographs within
the 3D intensity distribution using a discrete sampling of the
rotation group. An optimal sampling is one where the
samples are uniformly distributed and at a sufficient density
to resolve the smallest angular features. Because speckles in
the intensity distribution have linear dimension �, features of
this size �in voxel units� at the highest resolution shell qmax
determine the angular scale,

�� = �/qmax = 1/R . �31�

The rotation group parametrization that is best suited for
generating uniform samplings is based on quaternions �15�.
Unit quaternions are points on the unit sphere in four dimen-
sions and encode two-to-one the elements of the continuous
rotation group in three dimensions. Their key property is the
fact that the distance between quaternions q and q�, in the
usual sense, is simply related to the angle of the relative
rotation between the group elements associated with q and
q�. For small relative rotations ��, this relationship is

�q − q�� � ��/2. �32�

Given a ��, the problem of selecting rotation group samples,
such that any rotation is within a relative rotation �� of some
sample, is thus equivalent to the standard problem of con-
structing efficient coverings �16� of the three sphere. We
solve this covering problem by using a design based on a
highly symmetric polytope: the 600 cell �17�. This polytope
is the four-dimensional analog of the icosahedron in that it
approximates the curved surface of the sphere by a union of
regular simplices—3D tetrahedra rather than triangles in four
dimensions. The regular tetrahedron is efficiently covered by
points in the fcc arrangement; coverings with increasing res-
olution are shown in Fig. 5. The resolution of the covering is
parametrized by an integer n that gives the number of sub-
divisions of each edge of the tetrahedron. Our three-sphere
coverings are obtained by rescaling the points that cover the
tetrahedral faces of the 600 cell to unit length. Details of the
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construction, including the computation of the sample
weights, are given in Appendix C.

There are only two properties of the rotation group sam-
pling that have direct relevance to the EMC algorithm for
intensity reconstruction: the angular resolution �� and the
number of rotation samples Mrot. Defining �� as the covering
radius of the sampling, the n dependence is given by �see
Appendix C�

���n� � 0.944/n . �33�

When combined with the estimate �31�, this implies that n
should roughly coincide with the dimensionless particle ra-
dius R. Moreover, since n�R, the number of samples �see
Appendix C�,

Mrot�n� = 10�5n3 + n� , �34�

grows in proportion with the volume of the particle.

B. Particle support

Our phase reconstruction of the complex diffraction am-
plitude is carried out with the diffraction magnitude on the
same grid as used by the EMC algorithm for the intensity
reconstruction. The support constraint is therefore that the
particle contrast can be nonzero only within a sphere of ra-
dius R grid units. In our simulations, which were limited to
R�8, we increased the support radius by one or two units
because precise knowledge of the support is usually not
available in real experiments.

VI. RECONSTRUCTION ALGORITHM

Our algorithm for reconstructing the scattering contrast of
a particle begins by reconstructing the 3D intensity with the
EMC algorithm for classifying diffraction data. This section
describes in concise algorithmic language the EMC process

already sketched in Sec. II C. For the relatively much easier
final step of reconstructing the particle contrast from the in-
tensity, we use the difference-map �DM� phase reconstruc-
tion algorithm. A short description of the DM algorithm de-
scribed in greater detail elsewhere �18� is included for
completeness.

A. EMC intensity reconstruction

The EMC algorithm builds a model of the 3D intensity
from a large collection of nonoriented shot-noise limited dif-
fraction data. The orientational classification of the data is
probabilistic, where the data are assigned probability distri-
butions in the rotation group and these are systematically
refined so as to maximize the likelihood of the intensity
model. The EMC algorithm comprises of three steps:

�i� E-step: expand the grid intensities into the tomogra-
phic representation: W�q�→Wij.

�ii� M-step: update the tomographic intensities by expec-
tation maximization: Wij→Wij� .

�iii� C-step: compress the tomographic model back into a
grid model: Wij� →W��q�.

We use pseudocode to describe these steps in the next
sections. The notation matches the theoretical discussion in
Sec. II C. Spatial frequencies are denoted by q and p, detec-
tor pixel indices by i, rotation group samples by j, and k is
always a data index.

1. E-step: model expansion

In the E-step �Table III�, the grid model of the intensities
is expanded into a redundant tomographic representation
�model� to make the expectation maximization step �M�
easier. Intensities Wij in the tomographic model are treated as
independent variables by the M-step.

Each element of the tomographic model is associated with
a particular detector spatial frequency qi and rotation matrix
R j. The Mpix frequencies qi refer to the detector �or particle�
in an arbitrary reference orientation; the Mrot matrices R j are
rotations relative to the reference orientation. The construc-
tion of the qi for a simple square-array detector is given in
Sec. IV. Our rotation matrices are generated from precom-
puted lists of quaternions that sample the rotation group at
the desired resolution �see Appendix C�. We use linear inter-
polation to extract intensity values at the rotated spatial fre-
quencies q�=R j ·qi.

TABLE III. E-step: model expansion.

Input: grid model W�q�, reference tomograph spatial frequencies
qi, rotation matrices R j

Output: tomographic model Wij

for j←1 to Mrot do
for i←1 to Mpix do

q�←R j ·qi

Wij← Interpolate�W�q� ,q��
�

end

�

end
return Wij

FIG. 5. Sampling the 3D rotation group is equivalent to sam-
pling the surface of a sphere in 4D. Shown in the top row is a
scheme for sampling the surface of a sphere in a one lower dimen-
sion based on subdivisions of the 20 faces of the icosahedron. The
analogous construction in one higher dimension subdivides the 600
tetrahedral faces of the 600 cell, two examples of which are shown
in the bottom row. The resolution of the sampling is specified by the
number of subdivisions of each edge; shown are n=2 �left� and n
=3 �right�.
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2. M-step: expectation maximization

The probabilistic classification of the data and then their
aggregation into an improved tomographic model is per-
formed in the M-step �Table IV�. Central in this process is
the computation of the conditional probabilities Pjk. These
are based on the current intensity model Wij. When the dif-

fraction data �photon counts� Kik are averaged with respect to
these probabilities �Eq. �11��, the result is a tomographic
model Wij� with increased likelihood.

The most time-intensive parts of the computation and in-
deed of the whole reconstruction algorithm are the nested
loops over k, j, and i that would imply an operation count
that scales as Mdata�Mrot�Mpix. However, the innermost
loop, on the pixel index i, can be greatly streamlined in both
places where it occurs by skipping all the pixels that have
zero photons. We use a sparse representation of the photon
counts that reduces the time scaling to Mdata�Mrot�N since
most nonzero counts will be a single photon and the average
total photon number is N.

Two copies of the intensity model are held in memory at
any time: the current model for conditional probabilities and
the updated model obtained by photon averaging. In the in-
nermost loop computations of the conditional probabilities,
only the logarithm of the current model is used. The actual
computation in this most time-intensive step involves incre-
menting the conditional probabilities Pjk by log Wij for the
pixels i that recorded photons in diffraction pattern k �or a
multiple of this if multiple photons were recorded�. After the
conditional probability for a particular k is computed, the
second time-intensive step is executed. In this, the updated
model Wij� is incremented by Pjk, again, for only the pixels i
where photons were recorded �or a multiple of this�.

The pseudocode shows how directly the mutual informa-
tion I�K ,�� �W is computed from the conditional probabilities
Pjk �Table V�. In Sec. VII B, we show how this quantity
provides a useful diagnostic for reconstructions in addition to
having intrinsic value as a measure of information. There are

TABLE IV. M-step: expectation maximization.

Input: tomographic model Wij, data Kik, rotation group weights
wj

Output: updated model Wij� , mutual information I

I←0

for j←1 to Mrot do
Sj←0

for i←1 to Mpix do

Wij� ←0�
end

�

end
for k←1 to Mdata do

for j←1 to Mrot do

Pjk←CondProb�Wij ,Kik�
for i←1 to Mpix do

Wij� ←Wij� + PjkKik�
end

Sj←Sj + Pjk

I← I+ Pjk ·Log�Pjk /wj�

�

end

�

end
for j←1 to Mrot do

for i←1 to Mpix do

Wij� ←Wij� /Sj

end
end
I← I /Mdata

return Wij� , I

TABLE V. Conditional probability.

Input: data index k, tomographic model Wij, data Kik, rotation
group weights wj

Output: Pjk=CondProb�Wij ,Kik�

S←0

for j←1 to Mrot do
Pjk←Log�wj�
for i←1 to Mpix do

Pjk←Pjk+Kik Log�Wij�−Wij�
end

Pjk←Exp�Pjk�
S←S+ Pjk

�

end
for j←1 to Mrot do

Pjk←Pjk /S�
end
return Pjk

TABLE VI. C-step: model compression.

Input: tomographic model Wij� , reference tomograph spatial
frequencies qi, rotation matrices R j

Output: grid model W��q�

for each q do
W��q�←0

S�q�←0
�

end
for j←1 to Mrot do

for i←1 to Mpix do

q�←R j ·qi

G←GridNeighbors�q��
foreach p�G do

f ← InterpolationWeight�q�−p�
W��p�←W��p�+ fWij�

S�p�←S�p�+ f

�

end

�

end

�

end
for each q do

W��q�←W��q� /S�q��
end
W��q�←FriedelSym�W��q��
return W��q�
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a few places not shown in the pseudocode that require spe-
cial attention in the implementation. As an example, it is
important to check for over/underflow in the computation of
the conditional probabilities when the logarithms of the not-
yet-normalized probabilities are exponentiated.

3. C-step: model compression

The C-step �14� �Table VI� is the reverse of the model
expansion or E-step, and both of these operations use far less
time than the M-step that comes in between. Over the course
of multiple EMC iterations, the combination of C-step fol-
lowed by E-step has the effect of making the tomographic
model of the intensity Wij� consistent with a 3D model W��q�
defined on a grid. We use linear interpolation �as in the
E-step� when collapsing the tomographically sampled inten-
sities onto the grid.

Because of noise, the averaging of the data Kik in the
M-step produces a tomographic model that does not respect
the Friedel symmetry W��q�=W��−q� when compressed to
the grid model. This symmetry is restored at the conclusion
of the C-step by replacing W��q� and W��−q� with their av-
erage.

B. Phase retrieval

We use the difference-map algorithm �18� to reconstruct
the phases associated with the Fourier magnitudes obtained
by the EMC algorithm, as well as the Fourier magnitudes in
the central missing data region �q	qmin�.

Our pseudocode for the difference-map emphasizes its ge-
neric character as a method for reconstructing models subject
to two constraints. One constraint provided by the EMC in-
tensities is the Fourier magnitude constraint. The difference
map implements this constraint by the operation
FourierProj. FourierProj takes an arbitrary real-valued in-
put contrast C and projects to another contrast F called the
Fourier estimate. The action of FourierProj is most transpar-
ent on the Fourier transforms of the input and output con-
trasts. In the data region qmin	q	qmax, the output F inherits
the Fourier phases of the input C with the Fourier magni-
tudes provided by the square roots of the EMC intensities. In
the central missing data region q	qmin, both the Fourier
phase and magnitude of the input are preserved in the output.
Finally, for spatial frequencies above the data cutoff q
�qmax, the Fourier amplitudes of F are identically set to
zero.

The other difference-map constraint is implemented by
the operation SupportProj. When acting on an arbitrary real-
valued input contrast C, SupportProj outputs the support
estimate S. The output S is obtained by zeroing the contrast
in C outside the support of the particle and all the negative
contrast within the support. Since the phase reconstructions
are performed on exactly the same size grids as the EMC
intensity reconstruction, the radius of the spherical support
region implemented by SupportProj is the same dimension-
less radius R �increased by a few grid units� that defines our
binary contrast test particles and degraded resolution biomol-
ecules �Sec. V B�.

1. Difference-map phase reconstruction

The difference-map reconstruction �Table VII� begins
with a randomly generated initial real-valued contrast X and
is otherwise completely deterministic. As X is updated by the
operations FourierProj and SupportProj, the corresponding
Fourier and support estimates F and S are generated. In re-
construction problems that reach fixed points X�, where the
magnitude � of the update �X vanishes, either F or S can be
output as the solution since they are the same when � van-
ishes. This is not the case even for our phase reconstructions
with simulated data. There are multiple sources of error that
make it impossible for both constraints to be satisfied simul-
taneously. The intensity truncation for q�qmax, for example,
introduces a small inconsistency even when the diffraction
data are oriented perfectly by the EMC algorithm. Of the two
alternatives to choose for the reconstructed contrast, we use
the Fourier estimate F for reasons that will be clear below,
when we discuss the modulation transfer function �MTF�
�19�.

The behavior of the difference-map error metric
�= �F−S� typically has two regimes in phase reconstructions.
In the early iterations, � decreases nearly monotonically,
thereby improving the consistency between the Fourier and
support estimates. In the second regime, � is relatively con-
stant, with small amplitude fluctuations suggestive of a
steady state. Because �= ��X� also measures the magnitude
of the update, the iterated contrast X and the estimates F and
S are also fluctuating in this regime. To produce reproducible
results, we average the Fourier estimate F in the steady state
and call this the result of the phase reconstruction.

Since our spherical support is consistent with either enan-
tiomer of the particle �and the intensity data does not distin-
guish these either�, a successful reconstruction will be the

TABLE VII. Difference-map algorithm for phase
reconstruction.

Input: constraint projections FourierProj and SupportProj
Output: real-valued particle contrast C, error series E

C←0
M←0
X←RandomRealContrast

for i←1 to IterationCount do
S←SupportProj�X�
F←FourierProj�2S−X�
�X←F−S

X←X+�X

�← ��X�
E←Append�E ,��
if �	ErrorMax then

C←C+F

M←M +1

end

�

end
C←C /M
return C, E
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inversion of the true particle in about half of all attempts that
start with a different initial X. In those cases, we invert the
reconstruction before making comparisons.

2. Modulation transfer function

The Fourier estimates F have, by construction, always the
same Fourier magnitudes in the data region qmin	q	qmax
�provided by the EMC intensities�. This means that the fluc-
tuations of F at these spatial frequencies are purely the result
of phase fluctuations. By averaging the difference-map esti-
mates F �after the steady state is established�, we are per-
forming the average

MTF�q� = �exp�i�q�� , �35�

where �q is the Fourier phase at spatial frequency q. Phases
that are reconstructed well and fluctuate weakly give MTF
�1, while strongly fluctuating phases lead to a small MTF.
Since the degree of fluctuation is correlated with the magni-
tude of q, we additionally perform a spherical average of
MTF�q� to define a modulation transfer function that con-
cisely conveys the quality of the phase reconstruction as a
function of the resolution q= �q�.

VII. SIMULATIONS

This section explores the conditions necessary to recon-
struct particles in numerical simulations. We are primarily
interested in understanding the behavior of the reconstruction
algorithm as a function of the dimensionless particle radius
R. For any R, the feasibility and quality of reconstructions
depend critically on three additional parameters:

�1� Does the average number of photons per measurement
N satisfy the criterion �4� on the reduced information rate?

�2� Do the Mrot discrete samples of the rotation group
provide a sufficient approximation of the continuous group
for particles of the given complexity?

�3� Are the total number of measurements Mdata sufficient
to reconstruct the particle with acceptable signal to noise?

Although the parameters N and Mdata are determined by
the experiment while Mrot is algorithmic, this distinction is
artificial when we recognize that both the physical and com-
putational components of the imaging process are subject to
limited resources. We have studied the effects of these pa-
rameters systematically by reconstructing the binary contrast
test particles described in Sec. III. These particles resemble
biomolecules at a resolution above the atomic scale and can
be generated for any R. Our simulations culminate in a desk-
top computer reconstruction of the GroEL protein complex
�Sec. III� at a resolution corresponding to R=8.

A. Data generation

All our simulations begin with the construction of the
contrast of a particle at a specified dimensionless radius R
�Sec. III�. After embedding the contrast on a grid with the
chosen oversampling �usually �=6�, the squared Fourier
magnitudes are computed as a model of the intensities. All
particles in our simulations thus have only a single discern-
able structure/conformation at the measured resolution.

Simulated data—tables of photon counts—are generated
by repeatedly Poisson sampling the intensity model at a set
of spatial frequency samples specified by our detector param-
eters. In each simulated measurement, all the spatial frequen-
cies are rotated by a random element of the 3D rotation
group. We generate uniform rotation group samples by uni-
formly sampling points on the surface of the unit sphere in
four dimensions �quaternions� and mapping these to orthogo-
nal matrices �Eq. �C1��. The rotation element used to pro-
duce each measurement is not recorded. Because the data are
simulated with uniform rotation group samples, the group
weights used by the reconstruction algorithm are the uniform
sampling weights �Eq. �C13��. Since the rotated spatial fre-
quency samples will fall between the grid points of the in-
tensity model, interpolation is used to define the mean of
each Poisson-sampled photon count. Finally, by normalizing
the intensity model as described in Sec. IV B, our data have
the property that the mean photon number per measurement
is N.

The number of data used in the reconstructions �Mdata�
can be very large, sometimes exceeding 106 when R is large
and N is small. By using sparse records of the photon counts
�Sec. VIII A�, however, the total storage required for the data
is not much greater than the storage needed for a single 3D
intensity model having the corresponding signal to noise.
The reconstruction algorithm has, of course, no access to the
3D intensity model that was used to generate the data.

B. Convergence with rotation group sampling

We argued in Sec. V A that an adequate sampling of the
rotation group, for reconstructing particles of dimensionless
radius R, is obtained when the rotation group sampling pa-
rameter n �edge subdivisions of the 600 cell� matches this
value. Whereas the proportionality n�R is clear, we present
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FIG. 6. �Color online� Convergence with respect to rotation
group sampling. The plot shows the increase in the mutual informa-
tion I�K ,�� �W as the discrete sampling of the rotation group is
increased; the integer n is inversely proportional to the angular res-
olution. Saturation of the mutual information with n indicates the
data K have exhausted the available orientational information in the
intensity W, here for the case of an R=8 particle. The insets show
corresponding cross sections of the intensity W� generated by a
single EMC update starting from the true intensity W. Speckles in
the highest resolution shell appear at about n=8. The intensity scale
is logarithmic and missing data regions are rendered black.
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here some additional assessments that support the simple
rule n�R. While larger n are even better, the n3 growth in
the memory used by the algorithm motivates us to identify
the smallest n that achieves good results.

The most direct test is to perform a single iteration of the
EMC algorithm, beginning with the true intensity model. For
this, we generated data with sufficient total recorded photons
�N�Mdata� that signal to noise is not a factor. Since the data
are generated by the same intensity model that begins the
EMC update, the only thing that can spoil the preservation of
the intensity by the update is the insufficient sampling of the
rotation group. In Fig. 6 we show planar slices of the inten-
sity model after one EMC update for a particle with R=8.
The extreme case n=1, with only Mrot=60 samples, is
clearly inadequate because large regions of the intensity grid
are never visited by a rotation of one of the detector’s spatial
frequency samples. This shortcoming is eliminated at about
n=4 �Mrot=3240�; however, the intensity in the highest res-
olution shell lacks the expected speckle structure. These fea-
tures first become established at level n=8 �Mrot=25680�.

There is another assessment of the rotation group sam-
pling that does not require the true intensity model �or con-
verged reconstruction�. In this test, we ask to what extent the
data can detect additional rotational structure just by increas-
ing the sampling parameter n. The measure of rotational
structure most relevant to the available data is the mutual
information I�K ,�� �W. For a given intensity model W, this
gives the information a typical measurement K provides
about its location in the rotation group. Clearly this depends
on W—possibly a poor approximation of the true
intensity—as well as the noise in the data �mean photon
number N�. In any case, if the value of I�K ,�� �W is signifi-
cantly increased upon increasing n, then there is information
in the data that can detect additional rotational structure that
should be exploited. In our implementation of the EMC al-
gorithm, I�K ,�� �W is calculated with negligible overhead in
every iteration �see Table IV�. To test convergence with re-
spect to n, we simply increase n and observe how much
I�K ,�� �W increases. In Fig. 6 we also show the behavior of
I�K ,�� �W as a function of n for the same particle and data
used to create the intensity cross sections. The leveling off at
n�8 is consistent with our earlier observations.

C. Feasibility with respect to mean photon number

The total number of photons recorded in an imaging ex-
periment is N�Mdata. If the particle orientations were known
for each of the diffraction data then the quality of reconstruc-
tions would be independent of how the photon budget is
allocated: simple signal averaging will give the same result if
half the number of photons �N /2� are recorded on twice the
number of data sets �2Mdata�. This changes when the orien-
tations are unknown, and we rely on the reduced information
rate r�N� for guidance �Sec. II A�.

We computed r�N� using Eq. �4� by numerically evaluat-
ing I�K ,�� �W for binary contrast test particles. The strict
definition of r�N� calls for an average over an intensity en-
semble W; in our case, this corresponds to particles of a
particular radius R. Figure 7 shows plots of r�N� as a func-

tion of the mean photon number N for R=4, 6, and 8. As
shown by the small scatter in the results for the larger N,
fluctuations of I�K ,�� �W within each radius ensemble are
very small, thus, establishing r�N� as a useful statistic when
given only the particle radius. The single most important
conclusion to draw from the r�N� plots is that the reduced
information rate is negligibly reduced �from unity� for even
relatively small N. Taking r�N��1 /2 as the feasibility crite-
rion, we obtain mean photon number thresholds of N=27.5,
33.5, and 36.9 for the three sizes of particles. From studies of
the 1D minimal model �2�, where this behavior can be ana-
lyzed in greater detail, we expect the threshold N values to
grow logarithmically with R.

The consequences of r�N� being below the feasibility
threshold are noticed in two ways. First, there is a marked
change in the behavior of the EMC intensity reconstruction
algorithm, the progress of which we monitor by the time
series of the update magnitudes,
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FIG. 7. �Color online� Numerically computed reduced informa-
tion rate r�N� as a function of mean photon number N, for particle
sizes R=4,6 ,8—red �dashed�, green �dotted� and blue �solid� re-
spectively. The interpolating curve shows reduced information rate
averaged over 11 particles—represented by the scattered points—at
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FIG. 8. Update magnitudes �W for the intensity reconstruction
of an R=8 particle at four values of the reduced information rate:
r�25�=0.42, r�45�=0.55, r�80�=0.72, and r�225�=0.90. The nor-
mally rapid convergence ��W→0� of the EMC algorithm becomes
protracted as r�N� approaches the value of 1/2. The corresponding
particle reconstructions are shown in Fig. 9.
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�W2 = ��W��p� − W�p��2�p. �36�

Here W� is the update of W and the average is uniform over
all spatial frequencies between qmin and qmax. Figure 8 con-
trasts �W time series for four EMC intensity reconstructions
of the same R=8 particle, the data differing only in the value
of N with all other parameters, including the total photon
number, identical. The rapid decrease to zero, seen in the
reconstructions with r�80�=0.72 and r�225�=0.90, is typical
when r�N��1 /2. Likewise, the strongly nonmonotonic be-
havior that stretches out over many iterations is normal for
data that according to our r�N� criterion is below the feasi-
bility threshold. At the first broad minimum of �W in the
plot for the case r�45�=0.55, the reconstructed intensity is
nearly spherically symmetrical �a powder pattern�. It takes
the EMC algorithm many iterations to develop speckle struc-
ture by the gradual amplification of small features.

A second manifestation of being below our feasibility cri-
terion is a loss of resolution in the final particle reconstruc-
tion. This is demonstrated in Fig. 9, which shows the results
of three of the reconstructions described above. The degra-
dation of high spatial frequency detail in the reconstructions
at small r�N� is a direct consequence of the reduced infor-
mation rate in these data. With less total information avail-
able to reconstruct an accurate intensity, the resulting phase
reconstruction of the particle is compromised.

D. Reconstruction noise and number of measurements

Even when the orientations of the diffraction patterns are
known, shot noise in the intensity measurements will limit
the signal to noise of the reconstructed particle. The reso-
lution of the reconstruction will be compromised if the signal

to noise at the highest spatial frequencies is poor. Because
the intensities within a speckle are correlated, a natural quan-
tity to consider is the total number of photons recorded in a
typical high spatial frequency speckle. If we denote this
number by �, the associated shot-noise magnitude is ��, and
the signal to noise in the highest-frequency features of the
reconstruction is ��. The scaling of � with the experimental
parameters is obtained by dividing the total number of re-
corded photons N�Mdata by the number of speckles. Since
the latter scales as R3, the bound on the signal to noise given
by oriented diffraction patterns and perfect phase reconstruc-
tion scales as

SNR ��NMdata

R3 ��NMdata

Mrot
= S , �37�

where the second proportionality follows from Eq. �34� and
defines a convenient dimensionless measure of the signal.
We see that S2 is simply the average number of photons
assigned, in a classification scheme, to each tomograph in a
tomographic representation of the 3D intensity when the ro-
tation group is sampled at the appropriate resolution.

When the diffraction data are not oriented, the reduction
in the information rate, as measured by r�N�, leads to a loss
in signal to noise. For small data sets �which may not be
sufficient to reconstruct the particle�, this effect is modeled
by replacing Mdata with r�N�Mdata in Eq. �37�. However, as
argued in Sec. VII C, for even modest N, r�N� is close to
unity and loss of signal to noise by this mechanism is minor.

Provided the photon numbers are reasonable, say r�N�
�1 /2, reconstructions from nonoriented diffraction data will
fail for the same reason they fail for oriented data: the signal
to noise is simply too small. This is shown in Fig. 10, where
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FIG. 9. Reconstructions of an R=8 test particle at three values
of the reduced information rate r�N�, all other parameters are un-
changed. Shown in the top panel, from left to right, are r�25�
=0.42, r�45�=0.55, and r�80�=0.72; the true particle is reproduced
on the right. The bottom panel shows the corresponding MTF com-
puted by the phasing algorithm. Behavior of the EMC algorithm for
these reconstructions is shown in Fig. 8.
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FIG. 10. The same particle reconstructed with the same average
number of photons per diffraction pattern N=100 and increasing
data. From left to right in the top panel are shown reconstructions
with signal-to-noise parameter S=10,30,50; the true particle is on
the right. The panel below shows the corresponding MTF computed
by the phasing algorithm.
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three R=8 test particles are reconstructed at the same r�N�
=0.75 and decreasing values of S �decreasing Mdata�. We see
that below S�30, the resolution of the reconstructed particle
is far less than the intrinsic resolution of the R=8 particle
used to generate the data. The EMC algorithm succeeds at
reconstructing a low resolution model of the particle at the
smaller S because the speckles at small spatial frequency
may have sufficient numbers of photons when the speckles at
high frequencies do not. We have defined S so that the same
standard, say S�30, is meaningful for particles of arbitrary
size.

E. Biomolecule at 2 nm resolution

We prepared an R=8 GroEL particle �1-nm-half-period
resolution� and simulated diffraction data from its Fourier
intensities as described in Secs. III and VII A, respectively.
The mean photon number was set at N=100. For particles of
size R=8, this implies a reduced information rate
r�N�=0.75 �Fig. 7�. The EMC intensity reconstruction algo-
rithm was run with rotation group sampling up to n=8
�Mrot=25680� and up to 1 million diffraction patterns
�Mdata=106�. All other parameters used in these simulations
are listed in Secs. III–V.

As discussed above �Sec. VII D�, the EMC algorithm au-
tomatically reconstructs a lower resolution model when the
number of data is such that only the speckles at low spatial
frequency have adequate signal to noise. Because such lower
resolution models have coarser angular features, a lower res-
olution sampling of the rotation group can be used to recon-
struct them. These observations suggest a simple protocol for
accelerating the solution process. First obtain a low reso-
lution model and then refine this by increasing Mrot and Mdata
until the conditions for reconstructing up to the intrinsic res-
olution are reached. This strategy takes advantage of the fact
that in practice very few EMC iterations are needed for the
final time-intensive refinements. Time and memory scaling
of the algorithm with Mrot and Mdata is discussed in Sec.
VIII.

We began the intensity reconstruction of the GroEL par-
ticle using n=5 and Mdata=2�105 �S=54�. Most of the time
saving is the result of the reduced rotational sampling, which
scales as n3. A single EMC iteration on a 3 GHz machine at
these parameter values takes 40 min. The reconstruction of
low-frequency speckles can be monitored by visually in-
specting planar cross sections of the intensity model. A more
quantitative approach makes use of the mutual information
I�K ,�� �W, where W denotes the current intensity model.
When this quantity saturates, the EMC algorithm is unable to
improve the orientational accommodation of the data when
evaluated at the limited rotational sampling. Stagnation of
the EMC algorithm ��W=0� also implies the likelihood
function, of W given the data, cannot be improved with the
current settings. To improve both the orientational assign-
ments of the data and the likelihood function, the rotational
sampling and the number of data must be increased. Figure
11 shows the effects of gradually increasing n and Mdata on
the value of I�K ,�� �W. The refinements with n=7 and n=8
take very few iterations to reach the next �higher� plateau.

We used the vanishing of �W as the stopping criterion for all
the EMC stages, including the refinements. One EMC itera-
tion in the final refinement stage �n=8, S=62� took about
24 h. Figure 12 compares intensity cross sections after the
early �n=5� and late �n=8� stages of rotational refinement.

The GroEL particle was reconstructed from the final EMC
intensity model using the phase retrieval algorithm described
in Sec. VI B. The only other input to this algorithm is the
support of the particle contrast and the constraint that the
contrast is non-negative. Altogether there are four sources of
error that can degrade the quality of the reconstructed par-
ticle. Three of these are responsible for errors in the intensity
model: finite sampling of the rotation group, finite data sets,
and grid interpolation errors �finite oversampling�. The
fourth error source is the truncation of the data at spatial
frequencies outside the range qmin to qmax. The missing in-
formation for q�qmax has the greater effect since the non-
negativity constraint is very effective at reconstructing the
missing beam-stop �q	qmin� intensities when this region in-
cludes few speckles. Because the weak intensities beyond
qmax are not reconstructed—the algorithm treats them as
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FIG. 11. Mutual information I�K ,�� �W and EMC update mag-
nitude �W as a function of iteration and increasing rotational sam-
pling n in the intensity reconstruction of the GroEL particle. The
initial n is small to save time and increased when the mutual infor-
mation saturates and �W vanishes. With each increase of n, the
number of data was also increased: 2�105, 5�105, and 106. The
intensity model after the 17th iteration was used in the phase recon-
struction of the particle shown in Fig. 14.

FIG. 12. �Color online� Log-intensity cross sections after the
n=5 �left� and n=8 �right� stages of the intensity reconstruction of
the GroEL particle. The colors red �high� to yellow �low� span 4
orders of magnitude. The low-frequency speckles are already fully
reconstructed at rotational sampling n=5.

RECONSTRUCTION ALGORITHM FOR SINGLE-PARTICLE… PHYSICAL REVIEW E 80, 026705 �2009�

026705-15



zero—a small incompatibility is introduced in the constraints
used by the difference-map phasing algorithm. This together
with the other sources of error lead to the nonvanishing of
the difference-map error metric � shown in Fig. 13, and av-
eraging with respect to residual phase fluctuations is required
to arrive at a reproducible result. The phase retrieval MTF
function �Sec. VI B 2� computed during the averaging period
provides a comprehensive assessment of the internal self-
consistency of the entire reconstruction process.

The reconstructed 0.8 MDa GroEL particle is compared in
Fig. 14 with the R=8 resolution model used to generate the
diffraction data. There is clearly a loss in resolution as a
result of all the factors described above. From the phase
retrieval MTF function shown in Fig. 15, we see that contrast
begins to deteriorate beginning with spatial frequencies
about half the maximum of those measured �1 nm�. Since the
MTF begins to decline at about 0.5qmax, the reconstructed
resolution is conservatively half the half-period resolution or
2 nm.

VIII. COMPUTATIONAL REQUIREMENTS

Our simulations show that particles can be reconstructed
at low resolution R	8 and modest computational resources
even when as few as N=100 photons are recorded on the
average diffraction pattern. Because the parameters R and N
are dictated by the physical properties—including damage
mechanisms—of the sample and available light source and
are therefore least under the control of the imaging experi-
ment, it makes sense to assess the feasibility of real recon-
structions as a function of these parameters. We will see that
the computational resources are essentially independent of N
and scale as simple powers of R. This analysis assumes a
fixed oversampling � and fixed signal to noise in the recon-
structed contrast.

A. Memory scaling

The data storage demands are modest and minor relative
to the memory used by the algorithm when photon counts are
recorded in a sparse format. A sparse-encoded measurement
comprises on the order of N integers identifying the detector
pixels that have nonzero counts. For the pixels with single
counts, the pixel index provides a complete record; the small
minority of pixels with multiple counts requires an additional
integer. Sparse data storage therefore scales in proportion to
the total number of measured photons Mdata�N. At fixed
signal to noise, the number of photons aggregated per grid
point in the intensity reconstruction is fixed. Since the num-
ber of points in the intensity grid scales as R3, the total num-
ber of detected photons—and the sparse storage space—also
scales as R3. In a parallel implementation of the reconstruc-
tion algorithm, it makes sense for all the data to be resident
in each processor.

The largest set of variables used by the algorithm are the
current and updated tomographic representations of the in-
tensity models Wij and Wij� . These have size Mpix�Mrot and
scale as R2�R3=R5. The actual memory used depends
strongly also on �, which we assume is kept fixed as R is
varied. Our largest simulations �R=8, �=6� used about 1
Gb with the memory dominated by these arrays.

B. Time scaling

The least certain part of our analysis is estimating the
number of iterations needed by the EMC algorithm. The
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FIG. 13. Difference-map error metric � in the phase retrieval of
the GroEL intensity model obtained by the EMC algorithm. A
steady state of residual phase fluctuations is reached after about 50
iterations. Averaging the phase reconstruction over the subsequent
200 iterations produced the particle contrast shown in Fig. 14 and
the MTF function in Fig. 15.

FIG. 14. The R=8 GroEL particle �top left� compared with the
results of our reconstruction �top right�. The reconstruction was
rotated to bring the two particles into alignment. The resolution of
the reconstruction is degraded by about a factor of 2 relative to the
model used to generate the data. Cross sections of the contrast are
compared in the bottom row �left: model; right: reconstruction�.
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simulations described in Sec. VII C are consistent with the
hypothesis that the number of iterations is fixed and small
provided N exceeds a modest information theoretic threshold
�see Fig. 8�. Because this minimum N �see Fig. 7� is believed
to grow only logarithmically with R, we assume the criterion
can always be satisfied and, thus, the number of EMC itera-
tions is practically independent of R.

The most time-intensive operation in each iteration of the
EMC algorithm is the expectation maximization step �M�
where the photon counts in each measurement Kik are cross
correlated with the model log intensities in each rotational
sample log Wij. The number of operations scales as
N�Mdata�Mrot after the sum over the i index, using the
sparse data representation, is reduced to a sum of N terms. As
argued above, N�Mdata scales as R3 and Mrot as R3, giving a
time per iteration that scales as R6. This represents the time
scaling of the reconstruction since the number of iterations is
independent of R and the other two steps of the EMC update
�E and C� are much faster because they do not involve the
data.

C. Parallel implementation

Since both the memory and time scaling are dominated by
operations on the tomographic intensity models Wij and Wij� ,
in a parallel implementation these and the cross correlations
on them would be distributed among the processors so as to
minimize message passing. A natural approach is to have a
separate master node perform the E step in such a way that
blocks of the tomographic models �ranges of the j index� are
sent to different processors. After cross correlating with all
the data, which requires no message passing, each processor
will send its results back to the master node for aggregation
in the C step. In this scheme, both memory per processor and
time of the reconstruction are reduced in proportion to the
number of processors.

IX. CONCLUSIONS

The aim of this study was to provide a detailed assess-
ment of the feasibility and quality of reconstructions for the
proposed single-particle imaging experiments by testing the
performance of a particular algorithm developed for this pur-
pose. The many dozens of reconstructions required to map
out the parameters space could not have been carried out had
the operation of the algorithm not become a fairly routine
process. We never encountered a situation where the inten-
sity reconstruction �EMC algorithm� had to be abandoned or
restarted or where the subsequent phase reconstruction did
not reproduce the true particle to the expected resolution.
Our attention to experimental details �e.g., missing central
data� in the simulations gives us confidence that the algo-
rithm developed here will also succeed with real data.

A variant of our algorithm was previously studied in the
context of a minimal model having a single rotation angle as
missing data �2�. In the introduction, we argued that in some
respects the minimal model reconstructions might be harder
than the reconstructions in a realistic model, where the dif-
fraction data span the entire 3D rotation group. This scenario

has been confirmed by our simulations. Recall that in the
minimal model, a 2D intensity distribution is sampled by
nonintersecting 1D diffraction patterns, while in single-
particle imaging the intensity is 3D and the 2D diffraction
patterns intersect pairwise along arcs. In the minimal model,
the tomographic representation of the intensity is nonredun-
dant, while in the 3D problem the tomographs are highly
redundant and mutual consistency has to be imposed with the
E- and C-steps of the EMC algorithm. The structure of the
intersecting diffraction patterns and redundant variables in
the 3D problem provide a mechanism, absent in the minimal
model, which accelerates the reconstruction. The redundancy
is greatest near the origin, where many diffraction patterns
pass through the same speckles. Because the signal to noise
is also greatest in this region, the reconstruction can begin
there in a consistent fashion and then progress to higher res-
olution shells. By contrast, the rotational classification of dif-
fraction patterns in the minimal model is not incremental and
requires many more model-update iterations.

Reconstruction algorithms for the first round of experi-
ments will have to address two additional complications not
considered in our simulations. The first is the large shot-to-
shot fluctuation in the incident photon flux of the source
when the free electron laser �FEL� process is unseeded �11�.
This adds another missing datum to the three orientational
parameters, per diffraction pattern, that the expectation maxi-
mization step of the algorithm will have to reconstruct. The
second complication is the background of photon counts
arising from nontarget particles, upstream beam optics, and
inelastic scattering. To deal with this, the reconstruction al-
gorithm should make use of the averaged dark count �no
target particle�. This represents additional data and requires a
modification of the conditional probability computations.
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APPENDIX A: MUTUAL INFORMATION IDENTITIES

Given a trio of random variables K, �, and W, we can
evaluate the mutual information between one of them, say K,
and the other pair �� ,W� treated as a single random variable.
Writing the mutual information in terms of the entropy func-
tion H, we have

I�K,��,W�� = H�K� − H�K����,W�

= H�K� − H�K��� + H�K��� − H�K����,W�,

�A1�

=I�K,�� + I�K,W��� �A2�

Interchanging � and W in this derivation gives the identity

I�K,��,W�� = I�K,W� + I�K,���W. �A3�

Combining the two identities above, we obtain the general
result
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I�K,�� + I�K,W��� = I�K,W� + I�K,���W. �A4�

For our specific choice of random variables, the mutual in-
formation I�K ,�� vanishes identically because a measure-
ment K confers no information about the orientation � since
the ensemble of models W itself has an orientational degree
of freedom that is uniformly distributed. Our identity thus
involves only three terms,

I�K,W��� = I�K,W� + I�K,���W. �A5�

APPENDIX B: EXPECTATION MAXIMIZATION
DETAILS

1. Likelihood maximization

Rearranging the order of the sums in the definition of the
log-likelihood function, we obtain

Q�W�� = �
i=1

Mpix

�
j=1

Mrot

�Aij log Wij� − BjWij� � , �B1�

where

Aij = �
k=1

Mdata

Pjk�W�Kik, �B2�

Bj = �
k=1

Mdata

Pjk�W� . �B3�

Each term of the sum �B1� is of the form a log W−bW,
where a and b are positive constants. Since the terms are
independent, the global maximum is achieved when each
term is maximized with the value W=a /b.

2. Fixed-point rotational invariance

We wish to show that the intensities of the true model W̃

or, more generally, any rotation of this model W̃R is a fixed
point of the maximization update rule �11�. Given the true
model, we can write down the probability distribution of the
photon counts K,

P�K� = �
j=1

Mrot

wjRj�W̃,K� , �B4�

where the joint Poisson distribution

Rj�W̃,K� = 	
i=1

Mpix W̃ij
Ki

Ki!
exp�− W̃ij� �B5�

is the same �up to an irrelevant factor� as Eq. �8�; but the data
index k has been replaced by the function argument K rep-
resenting an arbitrary vector of photon counts. Because the
probability distribution on K is unchanged if the model is
rotated, we have

�
j=1

Mrot

wjRj�W̃R,K� = �
j=1

Mrot

wjRj�W̃,K� , �B6�

for arbitrary rotations R. The distribution �B4� and the in-
variance �B6� are approximations that become exact in the
limit Mrot→
.

Taking the numerator of the maximization update rule

�11� and evaluating it for the rotated model W̃R with the data
sum replaced by a sampling of P�K�, we have

�
k=1

Mdata

Pjk�W̃R�Kik = Mdata�
K

P�K�� wjRj�W̃R,K�

�
j�=1

Mrot

wj�Rj��W̃
R,K��Ki.

�B7�

Substituting Eq. �B4� for P�K� and using Eq. �B6�, this re-
duces to

�
k=1

Mdata

Pjk�W̃R�Kik = Mdata�
K

wjRj�W̃R,K�Ki, �B8�

=MdatawjW̃ij
R, �B9�

by the property that the mean of Ki for the Poisson distribu-

tion is W̃ij
R. By the same steps, the denominator of the update

rule gives

�
k=1

Mdata

Pjk�W̃R� = Mdatawj , �B10�

thus showing the desired fixed-point property

M:W̃ij
R → W̃ij

R. �B11�

3. Mutual information formula

To evaluate the mutual information I�K ,�� �W using the
quantities used by the EMC algorithm, we need to approxi-
mate the integral over orientations � by a sum over the
discrete samples j and expectation values over photon counts
Ki by a normalized sum over the counts Kik in the actual data
�k is the data index�.

Suppressing the model variables W, which we treat as a
fixed quantity whenever I�K ,�� �W is calculated by the EMC
algorithm, the mutual information is given by

I�K,�� = 
�
�
K

P�K�P���K�log
P���K�
P���

. �B12�

Replacing the � integral by a weighted sum over samples j
and the K expectation by a sum over the data, we obtain

I�K,�� = �
j=1

Mrot

wj
1

Mdata
�
k=1

Mdata

P�� j�Kk�log
wjP�� j�Kk�

wj
.

�B13�

We recover formula �19� with the identification
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wjP�� j�Kk� = Pjk�W� . �B14�

APPENDIX C: ROTATION GROUP SAMPLING
BASED ON THE 600 CELL

The quaternion parametrization of 3�3 orthogonal matri-
ces is given by the formula

R�q� = � 1 − 2q2
2 − 2q3

2 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q2q1 − 2q0q3 1 − 2q1
2 − 2q3

2 2q2q3 + 2q0q1

2q3q1 + 2q0q2 2q3q2 − 2q0q1 1 − 2q1
2 − 2q2

2 � ,

�C1�

where the unit quaternions q= �q0 ,q1 ,q2 ,q3� are points on
the unit three sphere. Because of the property R�q�=R�−q�,
the unit quaternions are mapped two to one to the elements
of the 3D rotation group. The multiplication rule for quater-
nions is most transparent in the 2�2 spin-1/2 representation

q = q0 + i� · q , �C2�

�� are the Pauli matrices� which defines the “scalar” �q0� and
“vector” �q� parts of the four vector. The scalar part encodes
just the rotation angle �, while the vector part also carries
information about the rotation axis n,

q0 = cos��/2� q = sin��/2�n . �C3�

From Eq. �C2� and properties of the Pauli matrices, one can
verify that the inverse of a rotation is obtained by reversing
the sign of the vector part. This fact is consistent with Eqs.
�C1� and �C3�.

Since the rotation required to move the element q to the
element q� is the quaternion q�q−1, a group-invariant dis-
tance between these elements should only be a function of
the rotation angle �conjugacy class� of q�q−1, that is, its sca-
lar part q0q0�+q ·q�. Since the latter equals

q · q� = 1 − �q − q��2/2, �C4�

the standard Euclidean distance on the quaternion three
sphere is a group-invariant distance between rotation group
elements. This last remark is the key for generating efficient
samplings of the 3D rotation group: the unit quaternions
should be placed to efficiently cover the three sphere �16�. A
cover is optimal if it has the minimum number of points with
the property that an arbitrary point of the space is always
within a given covering radius rc of some point in the cover.
In our case, the covering radius corresponds to a rotation
angle ��, such that an arbitrary rotation group element is
always within a rotation by �� from one of our samples. If q
is a point of the cover and q� an arbitrary point then

rc
2 � �q − q��2 = 2 − 2q · q�

= 2 − 2�q�q−1�0

= 2 − 2 cos��/2�

� ��/2�2.

The covering radius, of the three sphere by quaternions, and
the angular resolution �� of the rotation group sampling are
therefore related by

rc � ��/2. �C5�

Our covers of the three sphere are based on the highly
symmetric four-dimensional polytope that has the greatest
number of regular tetrahedra—600—as its 3D facets. Known
as the �3,3,5� polytope or 600 cell, it is the 4D analog of the
regular icosahedron �17�. The tetrahedral facets of the 600
cell are well covered by points arranged in the fcc lattice. We
will use the integer n to describe the degree of the refinement
of each tetrahedron by points of the fcc lattice. For example,
when n=4, each tetrahedron edge is divided into four equal
segments, thus, introducing n−1=3 edge points. This value
of n also introduces �n−1��n−2� /2=3 points on each tetra-
hedron face and �n−1��n−2��n−3� /6=1 points in the inte-
rior of the tetrahedron. The �3,3,5� polytope has 120 vertices,
720 edges, 1200 faces, and 600 cells. Combining this infor-
mation with the point counts of the tetrahedron refinements,
we obtain the following formula for the number of sample
points on the three sphere:

2Mrot�n� = 120 + 720�n − 1� + 1200
�n − 1��n − 2�

2

+ 600
�n − 1��n − 2��n − 3�

6

= 20�n + 5n3� .

The factor of 2 on the left-hand side takes into account the
overcounting by � quaternion pairs.

To determine the appropriate level of refinement n, we
need to compute the corresponding angular resolution ���n�.
Consider one tetrahedral cell of �3,3,5�; in canonical coordi-
nates �17�, the vertices are

v1 = �1,0,0,0� ,

v2 = 1
2 ��,1,1/�,0� ,

v3 = 1
2 ��,1/�,0,1� ,

v4 = 1
2 ��,0,1,1/�� ,

where �= �1+�5� /2 is the golden mean. The edge length of
this tetrahedron is 1 /�; the tetrahedra of the refinement will
have edge length 1 / �n�� and this is also the minimum dis-
tance between fcc lattice points and �2 times the covering
radius rc. When the fcc lattice points are projected to the unit
three sphere by rescaling, the points near the center of the
tetrahedron are expanded by the greatest amount. The linear-
expansion factor is given by the reciprocal of the distance
between the origin and the tetrahedron center,

4/�v1 + v2 + v3 + v4� = �8/�2 � 1.080. �C6�

The coarsest part of the sampling thus has minimum distance
rc=2 / �n�3�. Using Eq. �C5�, we obtain

���n� = 4/�n�3� � 0.944/n . �C7�

The samples of the 3D rotation group in this scheme carry
nonuniform weights. Because the measure on the continuous
group is just the volume element of the three sphere, the
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weight associated with a sample is proportional to the vol-
ume of its associated Voronoi cell. These weights/volumes
are nonuniform as a result of two effects. First, there is a
correction that affects the samples at the vertices and edges
of the 600 cell, where the joining of the tetrahedral cells
results in angular deficits. The second correction to the
weights arises from the non uniform distortion of the Voronoi
cells, when these are projected from the 600 cell to the three
sphere.

A regular �flat� tetrahedron has dihedral angle

 = cos−1�1/3� � 70.5 ° . �C8�

Because five tetrahedra meet at every edge of the 600 cell,
the fractional volume associated with samples on edges is
given by

f1 = 5/�2�� � 0.979 566. �C9�

The spherical angle subtended at a vertex of the regular tet-
rahedron, by spherical trigonometry, is 3−�. Because 20
tetrahedra meet at every vertex of the 600 cell, each vertex
sample has a fractional volume

f0 = 20�3 − ��/�4�� � 0.877 398. �C10�

Since there are no deficits at samples on faces or within the
cells of the polytope,

f2 = f3 = 1. �C11�

The volume change upon projecting a Voronoi cell from a
�3,3,5� facet to the unit three sphere is the result of two

things: �1� a uniform expansion by the linear scale factor
1 / �q̃�, where q̃ is the �nonunit� quaternion of the sample on
�3,3,5�, and �2� projection of the three space of the tetrahe-
dral cell to the tangent space of the three sphere at q, the
projection of q̃. The second of these produces a reduction by
the factor q ·c, where c is the unit outward normal vector to
the facet on which q̃ resides. In terms of the four cell verti-
ces,

c =
v1 + v2 + v3 + v4

�v1 + v2 + v3 + v4�
. �C12�

The overall �un-normalized� weight of a sample q, originat-
ing from sample q̃ on the 600 cell, is given by

w�q� = fk
q · c

�q̃�3 , �C13�

where k=0,1 ,2 ,3 is the associated dimensionality of the
sample �vertex, edge, etc.�. Vertex samples have the lowest
weight, samples at the cell center the highest; their ratio is

wvertex

wcenter
=

f0

f3

 �2

�8
�4

� 0.644. �C14�

In our precomputed tables �for given n� of quaternion
samples qj, we include the weights wj �w�qj� as the fifth
component. All formulas in this paper assume the normaliza-
tion

�
j

wj = 1. �C15�
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